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A recent theory [V. A. Shneidman, P. Jung, and P. Hianggi, Phys. Rev. Lett. 72, 2682 (1994)] for periodically
driven bistable systems in the limit of weak noise is assessed by means of analog simulation in the case of
strong forcing. Two structures of dips and peaks for even multiples of the forcing frequency become detectable
simultaneously in the relevant spectral density by decreasing the noise intensity. Stochastic resonance in such

a system is also investigated.
PACS number(s): 05.40.+j

Stochastic resonance (SR) was predicted originally [1] for
a simple symmetric bistable process x(¢) driven by both a
random noise, white and Gaussian, and an external sinu-
soidal bias and detected, later, in a variety of more compli-
cated systems [2]. SR can be equivalently interpreted as ei-
ther a resonant amplification of the amplitude (x) of the
periodic component of x(¢) (conventional SR) [3-7], or a
resonant synchronization of the switching mechanism of the
bistable process with the periodic bias [4,8,9]. In particular,
on keeping the forcing amplitude A and frequency
wo=2mv, fixed, (x) grows sharply with the noise intensity
D until it reaches a maximum and, then, decreases slowly
according to a certain power law. At variance with the notion
of ordinary resonance, (x) is a monotonically decreasing
function of wy. The representation of SR as a bona fide
resonance [8] is well illustrated by mapping the continuous
stochastic process x(t) into a stochastic point process ¢;
[4,9]. If ¢; denotes the sequence of x(¢) switching times (suit-
ably defined by introducing symmetric crossing levels [9]),
the quantities 7T(i)=t;—t;_, represent the residence times
between two subsequent switching events. The normalized
distributions of the residence times, N(T'), exhibit a structure
of peaks centered at T,=(n—3)T,, for n=1,2, ..., with
exponentially decreasing amplitude and finite size [4,10], su-
perimposed on an exponentially decaying background (see,
e.g., Fig. 1).[4,11] SR occurs when the synchronization ef-
fect is maximum, i.e., when, by tuning either D or wg, the
first peak of N(T) is made dominant over both the back-
ground and the remaining peaks [8].

In a recent paper [12], Shneidman, Jung, and Hanggi
(SJH) investigated a bistable process x(¢) in the limit
Ax,,/D—oo. For small noise intensities, i.e., for D smaller
than its SR wvalue (in both the conventional and
synchronization-based interpretation), N(T) exhibits a pro-
nounced peak structure (Fig. 1) and, consequently, the sub-
tracted spectral density S(w) (defined by subtracting all
o-like terms corresponding to the periodic components of the
relevant correlation function) develops a series of dips cen-
tered at 2nwq, according to the approximate law

B} X2 w(l1—p) 1—cos(wA)
S(w)=— — ) T2 >
0 A(1+u) [1—pu cos(wA)]*+ usin“(wA)
(1)
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where A coincides with the half forcing period, i.e.,
A=Ty/2 and Ty=21/w,. Here, £x,, denote the stable val-
ues of the unbiased bistable process and w is the key param-
eter of SJH theory discussed below. Equation (1) is a univer-
sal law, since it only reproduces the interwell dynamics of
the process, independently of the exact form of the relevant
bistable drift term. Furthermore, its validity is restricted to
values of the forcing frequency larger than
W (D/Ax,,)"?, where wg®* is the maximal switching rate
in the presence of bias [12].

The intrawell dynamics (with restoring constant ,) is
modulated by the periodic excursions that the stable values
of x(t) perform around *x,,, respectively, when subjected
to the periodic bias. Due to the x— —x symmetry of the
unbiased process, this effect may originate a series of peaks
at 2nw, in the subtracted spectral density. For large w, val-
ues, i.e., wy>(D/Ax,) *(w,x,,/A)0R®, such peaks are
expected to supersede the dips predicted in Eq. (1) [12].
Their height and width strongly depend on the exact form of
the bistable drift term of the process under study.

In the present work we assessed the predictions of SJTH
theory by means of an analog simulation [13]. In particular,
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FIG. 1. Residence time distribution for vo=41 Hz. Parameter
values are as follows: AV/D=1.6X10?, Ax,,/D=2.3X10% and
a=3.2x10* sec”! (estimated error 5%). The solid line represents
the fitting law of Ref. [18] with 67T,/Ty=1.8X% 1072 and
Swy/wy=0.3.
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FIG. 2. Spectral densities (arbitrary units) of the full signal for
different values of v,. Other circuital parameters are as in Fig. 1.

we produced evidence of the simultaneous existence of both
dips and peaks in the spectral density of a periodically driven
bistable process with Ax,, /D —o.

As in Ref. [12] we focused our attention on the quartic
bistable process

x=—=V'(x)+ &()+A cos(wyt), 2)

where V(x)=—ax?/2+bx*/4, w,=2a, and *x,, coincide
with the minima of V(x) and are separated by the barrier
AV=a?/4b. Our noise generator produces a random signal
&(t) with zero mean value, Gaussian distribution, and corre-
lation function

(&(1)€(0))=(D/m)exp(—|t|/7). 3

Here, 7 is taken so small (a 7=0.15) that the right-hand side
(rhs) term of Eq. (3) approximates a & function. In order to
explore the entire frequency interval studied by SJH, we em-
ployed a spectrum analyzer (model CF6400, manufactured
by Ono-Sokki, Japan) with dynamical range of up to 145 dB.
Furthermore, we restricted ourselves to the strong-forcing
limit

0<A/A.<1, (4)

where A x,,= 8AV/3\3. Here A, stands for the critical
value of the forcing amplitude above which the bistable na-
ture of the process (2) would be lost. The weak-noise limit
[12] was taken by selecting conveniently small D values, so
that Ax,, /D ratios of the order of 10> were easily simulated.

The results of our simulation work can be summarized as
follows.

(i) We separated the inter- and intrawell dynamics by fil-
tering x(¢) through a two-state (x=*1) filter and compar-
ing the statistics of the filtered signal with that of the full
signal, without changing the remaining circuital parameters.
The nonsubtracted spectral densities S(w) for the full and
the filtered signal are displayed in Figs. 2 and 3, respectively
(see also Fig. 4). In both cases the number m of dips is larger
than previously observed [14,15] and bounded from above
according to the SJH inequality
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FIG. 3. Spectral densities (arbitrary units) of the filtered signal
for different values of vy. Other circuital parameters are as in Fig.
1.

m< 5\ D (5)

(ii) The profile of all S(w) decays like w2 as predicted
in Ref. [12]. Deviations from such a universal behavior were
observed in the spectral density of the full signal for w, of
the order of a. This means that the high frequency compo-
nents of S(w) are filtered out by the intrawell relaxation
dynamics with rate constant w,. The validity of the power-
law decay of Eq. (1) is thus extended well beyond the limit-
ing value wq(Ax,,/D)"? assumed rather conservatively by
SJH [16].

(iii) The dip structure of S(w) becomes apparent by fil-
tering x(¢), as implied by the approach of Ref. [12]. We
verified that, within the accuracy of our statistical analysis,
the dips are centered at 2nwg, their width dw, is of the
order of wji**(D/Ax,,)"? [17], insensitive to the dip index n
and the forcing frequency w,. Most notably, the dips tend to

1 (Axm)l/Z
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FIG. 4. Magnification of the curves of Figs. 2 (lower curve) and
3 (upper curve) for vy=41 Hz. The solid lines represent our theo-
retical prediction for S(v) based on Eq. (1). 6T, and dw, are as in
Fig. 1.
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disappear with increasing w, larger than w@®* and their

shape is not as sharp as predicted by Eq. (1), where
S(w=2nwy)=0.

(iv) No peak structure was observable in the subtracted
spectral densities for the filtered signal, whereas for the full
signal, broad peaks located in the vicinity to 2nw, were
detected at relatively high values of the forcing frequency,
namely, for wy= wg**. Moreover, such peaks get sharper
(i.e., higher and narrower) on further increasing w,, and
their height decreases with the peak index according to a
power law. We checked that these properties strongly depend
on the actual shape of the potential V(x).

(v) Dips and peaks of S(w) may coexist for the full signal
(Fig. 2). This happens for wy,~wg*, as suggested in (iii)
and (iv). In such a case, their position deviates slightly from
the predicted value 2n w( by shifting respectively to the right
and, possibly, to the left. This observation, which could not
be reproduced analytically under the SJH approximations,
confirms the results of some numerical computations by the
same authors [see Fig. 1 (inset) of Ref. [12]]. The relative
weight of dips and peaks depends markedly on the forcing
frequency. At very low wg values no peak is detectable and
the curves of Figs. 2 and 3 approach one another. At high
wq values peaks dominate over dips, which, in turn, tend to
vanish.

(vi) According to SJH theory, marked dip structures in
S(w) correspond to multipeaked residence time distribu-
tions. We checked that in the limit of weak noise and strong
forcing, the shape of the nth N(T') peak is well approximated
by a Gaussian function with standard deviation 67, indepen-
dent of n. The peak height N(T,) decays according to the
exponential law N(T,)=N(T;)exp[—(n—1)dw;/w,] with
dw, defined in (jii) [18]. The two quantities 67, and Sw, are
apparently related by a phenomenological law of the type
2D/ évy~=Ax,,6T,/2m, whence 6v;6T,~4mwD/Ax,, .

On concluding, we discuss now the role of the key param-
eter u [12]

(1—p)wg=wg*(D/Ax,)" (6)

introduced in Eq. (1). We recall that the characteristic fre-
quency on the rths of Eq. (6) appears in the present work as
(a) the width Sw, of the S(w) dips (at least in the absence of
peaks due to the intrawell dynamics), (b) the lower w, bound
for the existence of such dips, and (c) the exponential decay
constant of the function N(T,), see (vi). In the strong-
forcing regime (4) it is possible to discriminate between two
clear-cut limiting values of the Kramers switching rate [10].
For t=0 and A<A_., the time-dependent potential
V(x,0)=V(x)—Ax cos(wgf) in Eq. (2) exhibits two asym-
metric wells: a shallower one on the left-hand side with

maximal Kramers rate wx** and a deeper one on the rhs with
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FIG. 5. Spectral densities (arbitrary units) of the filtered signal
for different values of D: D/AV=56X10"*% (curve 1),
2.0%1073 (curve 2), 7.0x 1073 (curve 3), and 2.3X 1072 (curve 4).
Inset: (x)? (arbitrary units) versus D for the full (curve a) and the
filtered (curve b) signal. All remaining parameters are as in Fig. 1.
minimal rate wg"”. In the weak-noise limit, wg""<wg®*. In
the adiabatic approximation [19] it is possible to introduce
two time-dependent switching rates r(t) (out of either poten-
tial well), which oscillate between wg™” and w2®* with pe-
riod T,. We verified that a SR behavior is detectable in the
strong-forcing regime, too, by plotting (x)? versus D in Fig.
5 for both the full and the filtered signal. The amplitude of
the periodic component of x(¢) reaches its maximum for a
small value of the noise intensity, D ,,;, , roughly correspond-
ing to the condition wy~ wg**(D,,;,), and contrary to con-
ventional SR, continues almost unchanged for a wide D
range with upper bound, D,,., approximated by
W™ w%m(D max)'

Finally, the actual shape of the S(w) dips can be deter-
mined more accurately than in Ref. [12]. Since the quantity
2A in Eq. (1) is a random variable with mean value 7\, and
finite standard deviation 8T, it seems quite natural to take
the average of Eq. (1) with respect to A rather than just
imposing A =Ty/2. Furthermore, our analysis of the N(T)
peak profile (Fig. 1) suggests that A is distributed according
to a Gaussian function with the appropriate mean value and
standard deviation reported in (vi). In Fig. 4 we compare the
theoretical curve for S(w) thus obtained with the results of
analog simulation. The agreement is particularly close in the
case of the filtered signal. Most notably, the finite depth of
the S(w) dips is correctly reproduced as a result of the av-
eraging procedure, with no relevant change in the dip width.
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